Ensemble Data Mining Methods

نویسنده

  • Nikunj C. Oza
چکیده

INTRODUCTION Ensemble Data Mining Methods, also known as Committee Methods or Model Combiners, are machine learning methods that leverage the power of multiple models to achieve better prediction accuracy than any of the individual models could on their own. The basic goal when designing an ensemble is the same as when establishing a committee of people: each member of the committee should be as competent as possible, but the members should be complementary to one another. If the members are not complementary, i.e., if they always agree, then the committee is unnecessary---any one member is sufficient. If the members are complementary, then when one or a few members make an error, the probability is high that the remaining members can correct this error. Research in ensemble methods has largely revolved around designing ensembles consisting of competent yet complementary models.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ensemble of M5 Model Tree Based Modelling of Sodium Adsorption Ratio

This work reports the results of four ensemble approaches with the M5 model tree as the base regression model to anticipate Sodium Adsorption Ratio (SAR). Ensemble methods that combine the output of multiple regression models have been found to be more accurate than any of the individual models making up the ensemble. In this study additive boosting, bagging, rotation forest and random subspace...

متن کامل

The prediction of lymphedema via the combination of the selected data mining algorithms

Background: Breast cancer is the second leading cause of cancer death in women, after lung cancer. Due to the importance of predicting this disease, the use of data mining methods in medical research is more significant than before. Data mining algorithms can be a great help in preventing the development of lymphedema in patients. The aim Of this study was to create a diagnosis system that can ...

متن کامل

A Novel Ensemble Approach for Anomaly Detection in Wireless Sensor Networks Using Time-overlapped Sliding Windows

One of the most important issues concerning the sensor data in the Wireless Sensor Networks (WSNs) is the unexpected data which are acquired from the sensors. Today, there are numerous approaches for detecting anomalies in the WSNs, most of which are based on machine learning methods. In this research, we present a heuristic method based on the concept of “ensemble of classifiers” of data minin...

متن کامل

Credit scoring in banks and financial institutions via data mining techniques: A literature review

This paper presents a comprehensive review of the works done, during the 2000–2012, in the application of data mining techniques in Credit scoring. Yet there isn’t any literature in the field of data mining applications in credit scoring. Using a novel research approach, this paper investigates academic and systematic literature review and includes all of the journals in the Science direct onli...

متن کامل

Combination of Ensemble Data Mining Methods for Detecting Credit Card Fraud Transactions

As we know, credit cards speed up and make life easier for all citizens and bank customers. They can use it anytime and anyplace according to their personal needs, instantly and quickly and without hassle, without worrying about carrying a lot of cash and more security than having liquidity. Together, these factors make credit cards one of the most popular forms of online banking. This has led ...

متن کامل

Ensemble Classification and Extended Feature Selection for Credit Card Fraud Detection

Due to the rise of technology, the possibility of fraud in different areas such as banking has been increased. Credit card fraud is a crucial problem in banking and its danger is over increasing. This paper proposes an advanced data mining method, considering both feature selection and decision cost for accuracy enhancement of credit card fraud detection. After selecting the best and most effec...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009